Teorie - Příprava na test
1. Nakresli logická hradla, zapiš operátor hradla jako výraz (např. X=A+B), nakresli pravdivostní tabulku:
a) NOT
b) OR
c) XNOR
d) AND
2. Pojmenuj následující hradla, zapiš jejich výraz a pravdivostní tabulku
a)
Řešení
NOR
A | B | X |
---|---|---|
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 0 |
b)
Řešení
XOR
A | B | X |
---|---|---|
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
c)
Řešení
NAND
A | B | Q |
---|---|---|
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
3. Zapiš výraz pro výstupy zapojení a pro označené vodiče:
Řešení
a)
b)
Řešení
a)
b)
c)
4. Nakresli zapojení pro následující výraz a nakresli pravdivostní tabulku
Řešení - zapojení
Řešení - tabulka
Taktéž v zapojení můžeme použít jeden OR, který příjmá 3 vstupy místo dvou (jelikož sčítání je asociativní a komutativní).
Vytváření tabulky si ulehčíme spočítáním sloupců pro námi zvolené podvýrazy (, , ) jejich hodnoty použijeme v dalších výpočtech, abychom se vyhnuli chybám při počítání komplikovaných výrazu z hlavy. Pokud víme na první pohled hodnoty některých řádků výsledku, můžeme je vyplnit hned do výsledku a v pomocných sloupcích je přeskočit. Nutné sloupce jsou pouze vstupy (,,) a výstupy ().
0 | 0 | 0 | 0 | 1 | 1 | 1 |
0 | 0 | 1 | 0 | 0 | 1 | 1 |
0 | 1 | 0 | 0 | 1 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 1 | 1 |
1 | 1 | 0 | 1 | 0 | 0 | 1 |
1 | 1 | 1 | 1 | 1 | 0 | 1 |
5. Zjednoduš následující výraz do co nejjednodušší podoby
Výsledek zde:
Řešení
Výsledek zde:
Řešení